In-Situ Real Time Measurement of Melt Constituents

Robert De Saro Dr. Arel Weisberg Energy Research Company www.er-co.com

DOE/OIT Sensors and Controls '01 Annual Meeting

June 6-7, 2001

Agenda

- Participants
- Brief Summary of Accomplishments
- Problem Statement
- Concept Description
- Experimental Data
- Software Developments

DOE Participants

- DOE's Office of Industrial Technologies
 - Sensors and Controls
 - Innovation and Inventions
 - Glass

Funding Partners

- **◆**DOE
- **♦**ERCo
- Crucible Specialty Metals
- **♦NYSERDA**
- ♦NY State DED

Participants

- Oak Ridge National Laboratory
- Fenton
- Crucible Specialty Metals
- Alcoa
- Hydro Aluminum
- Crestwood Metals
- Mississippi State University
- University of South Carolina
- Stein Atkinson Stordy

- Demonstrated Technique
- ◆Inexpensive Probe Developed Any angle, and depth.
- Probe has 130 hours with No Degradation
- Accuracy Targets Achieved

- Lab Testing Completed
- Pilot-Scale Testing Underway and Nearly Completed
- Alloy Diffusion Studies Started
- Developing Proprietary Signal Enhancement Techniques

- ERCo Laser Facility Built
- Proprietary Software Running
 - First Principles
 - No Calibration Needed
 - Excellent Results

Accomplishments Continued

- Will Display at Alcoa/DOE Showcase in August
- Host Sites
 - Alcoa
 - Hydro Aluminum
 - Others

- For Aluminum, Commercialization Plan Completed
- MOU for Licensing Agreement Signed for Overseas and US Market
- Patent in Process

- Other Opportunities
 - Glass Batch DOE Funding
 - Molten Steel NYSERDA Funding
 - Alloy Identification NY DED Funding

Problem Statement

- Off-Line Sampling of Melt Constituents on a Batch, Intermittent Basis
- This Leads to
 - Excessive Melting Times
 - Quality Problems
 - Wasted Feedstock
 - Increased Energy Use and Emissions
 - Wasted Product

Identify elemental constituents in metal and glass melts during alloying and

- Develop an instrument capable of:
 - 1. Being inserted into the melt

fabrication process

- 2. Taking real-time, continuous measurements
- 3. Installed costs acceptable to industry

LIBS Technology

- Laser Induced Breakdown Spectroscopy
- Tightly focused laser is used to vaporize a minute amount of material resulting in a plasma
- UV light emitted by the plasma is analyzed using a spectrometer
- The strength of emissions from individual elements in the spectrum are directly related to their concentration in the material

LIBS Optical Design

Concept Description

A. Measurements Made Within Furnace

B. Measurements Made During Pour

Aluminum Applications

- Aluminum In-Line Alloying
- Aluminum Continuous Furnace
- Advance Science of Furnace Modeling
- Aluminum Scrap Alloy Separation

ERCo LIBS Facility

LIBS Technology

A Tightly Focused Pulsed Laser Is Used to Vaporize and Ionize the Sample Material (Solid, Liquid, or Gas)

LIBS Technology

Spectrometer gathers the ultraviolet light and spreads it, like a prism, into a spectrum where the contribution of each element can be seen

Laboratory Scale Probe

LIBS Data – Molten Aluminum

LIBS Data - Molten Aluminum

LIBS Data From Solid Plate

Cr Measurements

Spectral Peaks From Mean Spectrum of Inside Molten 6061 Aluminum

	Peak Signal (1000's counts)	Local Noise Level (1000's counts)	Peak-Noise (1000's counts)	Difference From Plate
Cr 357.9 nm	182	34	148	0.68 %
Cr 359.3 nm	170	34	136	-3.55 %
Cr 360.5 nm	153	34	119	-1.65 %

Data Analysis

Data Analysis

Calibration Curves

Durability

- Probe was immersed in molten aluminum for a total of 130 hours at 800 °C (1470 °F)
- Probe is still operable:Neither probe sheath nor the optics suffered degradation

VFM

Installation at Pilot Scale Facility

Installation at Pilot Scale Facility

Pilot Scale Testing

Pilot Scale Testing

Pilot Scale Test Plan

- 1. Measure molten base metal formulation and compare to LIBS spectra from solid sample
- Add Magnesium to change concentration by 0.1% and compare to base metal spectra
- 3. Add Magnesium, Copper, Chromium, and Manganese to change concentration by 0.2-0.3% and compare to base metal spectra

LIBS Data - Aluminum

LIBS Data - Aluminum

Concentration Measurements

Calculate Ratios of Elements from Line Intensity Ratios

Element Ratio	Baseline Ratio	Measured Line Ratio	Calibrated Ratio
Fe/Al	0.0078	0.561	0.0079
Mn/Fe	0.51	1.002	0.504
Cr/Al	0.0003	0.482	0.0003

LIBS Data – Change in Composition

Concentration Measurements

Element Ratio	Added Percentage	Calibrated Ratio Increase
Mn/Fe	0.2%	0.21%1
Mg/Fe	0.2%	0.32%1

Calibration Curves

ERCo		Energy Research Company	

Software Developments

- ERCo has Proprietary Software Using First Principles that Translates LIBS Spectra into Concentration Measurements
- Method Applies to both Molten and Solid Data
- Method is Independent of Experimental Parameters such as Laser Power
- No Calibration Data Required
- Actual Concentrations are Computed (rather than ratios)
- Sample Material Does Not Need to be Specified

Initial Software Test

Initial Software Test

Total Potential Energy Savings

- ◆Aluminum 17 Trillion Btu per Year
- ◆Glass 17 to 45 Trillion Btu per Year
- ◆Steel 26 Trillion Btu per Year
- ◆Total 60 to 88 Trillion Btu per Year Possible

LIBS Advantages

- Fast
 - 10-50 Measurements/second with commercial low cost (~\$10k) solid state lasers
- Accurate
 - Able to measure concentrations at fractions of a percent
- Applicable to a wide range of materials
 - Metals
 - Glass
- Proven
 - Extensive literature on use of the process in lab environments

Advantages

- Constituents Instantaneously and Accurately Determined Anywhere in the Melt
 - Replaces melt analysis based on single "button"
 - Can Drive Development of Computer Simulations of Furnace Performance by Providing Test Data
- Electronics Removed from the Harsh Melt Environment Through Use of Fiber Optics
- Overall System is Inexpensive

Conclusions

- LIBS Feasibility Proven
- Technology Tested in Pilot-Scale Facility
- Development Proceeding with Industry Guidance
- Multiple Number of Markets Identified –
 Some Not Originally Anticipated